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Nonorthogonal tight-binding Hamiltonians for defects and interfaces in silicon
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A computationally efficient and physically accurate method is desirable for simulation of solid-state phe-
nomena that must be modeled by large atomic systems. To this end we present a nonorthogonal tight-binding
model Hamiltonian based on the extended Hu¨ckel approach. Tests of existing parametrizations of this type of
model Hamiltonian on geometries including some low-energy crystal structures, point defects, and surfaces
reveal important shortcomings. We develop an improved parametrization and test it extensively on a wide
range of crystalline defects and surfaces, and an amorphous sample. Our model is well suited to capture the
energetics of crystalline, defective crystalline, and amorphous silicon.@S0163-1829~97!04039-3#
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I. INTRODUCTION

Atomistic simulation of solids is becoming increasing
useful in understanding complex processes which involve
dynamics of a large number of atoms, such as bulk and
face diffusion and motion of defects and interfaces. Phen
ena such as nucleation and propagation of dislocations,
tion of grain boundaries, and the evolution of th
amorphous-crystalline interface are examples of systems
require models comprising at least a few hundreds of ato
for realistic description. In the case of covalent solids,
presence of directed and localized bonds produces de
structures that can be significantly different from the equil
rium bulk structure. These cannot be captured easily by p
nomenological descriptions, based for instance on continu
models, which makes atomistic simulations all the more
evant and important. A prime example of a covalent solid
silicon, often referred to as the prototypical semiconduc
which has been studied intensively because of its fundam
tal and technological importance.

There are two conflicting demands on realistic simu
tions of the types of phenomena mentioned above. The
is the need for accuracy, without which the results of sim
lations are not meaningful. The second is the need for la
system sizes that provide adequate descriptions of the
sible variations in the structure.Ab initio density-functional
theory~DFT! calculations using the local density approxim
tion ~LDA ! have been shown to be very accurate for se
conductor systems such as silicon. However, these calc
tions use large bases and include a self-consistent treat
of the electrons, which makes them computationally exp
sive. Effective interatomic potentials that do not explicit
involve the electronic degrees of freedom allow for very f
computation and make simulations of very large systems~of
order millions of atoms! possible. Despite the fact that inte
atomic potentials for silicon have been studied extensive1

their accuracy remains an open question. These poten
miss the fundamental quantum-mechanical nature of
electrons which controls the interatomic bonding, and th
validity far from their fitting regime is uncertain. The tigh
560163-1829/97/56~16!/10488~9!/$10.00
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binding approximation holds the promise of giving a reaso
able description of atomic interactions, while being fa
enough for molecular-dynamics simulations of relative
large systems. Although the parameters of the tight-bind
Hamiltonian must be derived empirically, this approa
keeps some of the fundamental physics through a quant
mechanical description of the electronic degrees of freed
while the minimal basis and the sparse Hamiltonian mak
much faster than DFT/LDA.

Recently, several groups have studied orthogonal2–5 and
nonorthogonal6,7 formulations of the tight-binding approxi
mation for the description of covalent solids like silicon a
carbon. One such formulation assumes that the Hamilton
and overlap matrices are proportional to each other thro
the prescription given by extended Hu¨ckel theory. The most
recent implementation of this formulation for silicon is du
to Menon and Subbaswamy.6 These authors determined th
empirical parameters in the Hamiltonian by reproducing
energetics of silicon clusters. Another recent example o
nonorthogonal tight-binding Hamiltonian is the work o
Frauenheimet al., who calculate the matrix elements by e
plicitly computing the appropriate integrals within DFT
LDA, using contracted atomic orbitals.7

In this work we present a nonorthogonal tight-bindin
Hamiltonian for silicon, suitable for the simulation of crys
talline and amorphous systems. This model is a modifica
of the Menon-Subbaswamy approach. We keep the fu
tional form which has few~11! adjustable parameters, and
the total energies of several structures toab initio results.
The structures are chosen to be representative of the ge
etries found in the crystalline and amorphous systems we
interested in simulating.

The rest of the paper is organized as follows: In Sec. II
describe the functional forms and parameters of the tig
binding Hamiltonian. In Sec. III we compare the results
tests of the various models~those of Menon-Subbaswam
and Frauenheimet al. as well as the one introduced here! to
DFT/LDA calculations for crystalline defects and surface
In the final section we describe the similarities and diffe
ences among the Hamiltonians and discuss some obse
10 488 © 1997 The American Physical Society
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56 10 489NONORTHOGONAL TIGHT-BINDING HAMILTONIANS . . .
tions on the relationship between the band structure
point defect formation energies, and state our conclusion

II. MODELS

A. Extended Hückel theory

The foundation of our model is the tight-binding Ham
tonian in the two-center approximation, expressed in a n
orthogonal basis, as described by Menon and Subbaswa6

with the modifications noted below8. In the following discus-
sion we will denote the tight-binding Hamiltonian from th
work of Menon and Subbaswamy as MS-TB, including t
choice of parameter values. The tight-binding Hamilton
which we present in this paper, similar in form to MS-TB b
with different parameter values, we will denote as NO-T
~for nonorthogonal tight binding!. The basis consists of ones
and threep orbitals centered on each atom. Orbitals on
same atom are assumed to be orthogonal to one anothe
cause of their symmetry, but orbitals on different atoms
not necessarily orthogonal. The conventional assumptio
orthogonal orbitals on neighboring atoms can be shown to
equivalent to a pairwise~classical! repulsion for a particular
crystal structure, but the repulsive potential is not necessa
the same for different crystal structures.9 The computational
demands of nonorthogonal and orthogonal tight binding
fer only in the additional storage needed for the overlap m
trix, and the additional cost of finding the solution and eva
ating the forces for the generalized eigenvalue prob
rather than the simple eigenvalue problem. For both
memory use and computational cost the differences are
a factor of two, not significant as far as practical compu
tions are concerned. However, this modest increase in
computational expense is offset by the important physics
flexibility added to the model by the nonorthogonal form
the Hamiltonian.

We begin with matrix elements of a hypothetical orthog
nal tight-binding Hamiltonian,

Vll8m~r !5Vll8me2a~r 2d0!C~r !, ~1!

whereVll8m is the matrix element for orbitals of typel and
l8 (s or p), m is the type of overlap configuration (s or p),
and d0 is the bond length at the experimentally observ
equilibrium volume. The functional dependence ofVll8m
with distance, given in Eq.~1!, is the simple exponentia
used in MS-TB multiplied by the smooth cutoff functio
C(r ),

C~r !5
1

2F11cosS p~r 2Rc!

Wc
D G , ~2!

for the purposes of molecular-dynamics simulations.Rc is
the radius of the onset of the cutoff andWc is the width over
which the cutoff function smoothly changes from 1 to
Extended Hu¨ckel theory takes the dependence between
parameters characterizing the elements of the overlap m
Sll8m and the elements of an orthogonal HamiltonianVll8m
to be
d
.
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Sll8m5
2Vll8m

K~r !~el1el8!
. ~3!

K(r ) is the Hückel nonorthogonality coefficient, which in
this work, as in MS-TB, varies with the distance between
two atoms as

K~r !5K01C0~r 2dmin!
2. ~4!

In the MS-TB model the parameters that govern the variat
with distance and the position of the minimum,C0 anddmin ,
are fixed to be equal toa andd0, respectively. Since there i
no physical rationale for this assumption, we letC0 anddmin
vary independently.el is the energy eigenvalue of an orbit
of type l (s or p). The parametersSll8m and Vll8m and
geometrical factors determine the elements of the matr
Si j and Vi j , as discussed in Harrison.9 The corresponding
relation for the Hamiltonian matrix elementsHi j ~expressed
in the nonorthogonal basis! as a function of the hypothetica
orthogonal matrix elementsVi j is

Hi j 5S 11
1

Ki j
2S2i j

2 DVi j . ~5!

The function

S2~r !5
Ssss~r !22A3Ssps~r !23Spps~r !

4
~6!

describes the overlap between twosp3 hybrids, with an im-
plicit distance dependence through theSll8m terms. Correct-
ing an erroneous term in the MS-TB expression, we use H
rison’s original derivation forS2 which does not include a
Vppp term.9

The eigenvalues of the generalized eigensystem

Hcn5enScn ~7!

are the single particle states. These contribute to the t
energy through a band-structure term. The other contribu
to the total energy is a classical pair repulsion given by

Vrep~r !5x0e24a~r 2d0!. ~8!

After fitting the model parameters, we find that this last ter
as in the MS-TB model, is extremely small. In orthogon
tight-binding schemes the~screened! Coulomb repulsion of
the cores and the nonorthogonality of the reals andp orbit-
als both contribute to the effective classical repulsion. A
parently, this repulsion is greatly reduced in our model b
cause we explicitly include the nonorthogonality of th
orbitals. The total energy is given by

Etot5 (
occ n

en1(̂
i j &

Vrep~r i j ! ~9!

and the corresponding force on atomi is

FW i52 (
occ n

K cnU]H

]rW i

2en

]S

]rW i
UcnL 2(

j

]Vrep~r i j !

]rW i j

.

~10!

The three parameters which are not subject to fitting
d052.35 Å, Rc54.027 Å, andWc51.0 Å. The first is sim-
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10 490 56NOAM BERNSTEIN AND EFTHIMIOS KAXIRAS
ply a scaling factor, chosen for convenience to be the nea
neighbor distance at equilibrium in the diamond structu
The latter two are chosen so that the active region of
cutoff function C(r ) does not overlap with any neighbo
shells in the diamond structure, and so that the range ofC(r )
is the same as the range of the matrix elements in the m
proposed by Frauenheimet al. ~see the next subsection!. The
remaining parameters that enter in the definition of t
model Hamiltonian are determined by fitting to a dataset
ab initio total energy calculations as discussed in Sec. II

B. Density-functional tight binding

The Hamiltonian proposed by Frauenheim and
workers is also a tight-binding Hamiltonian in the two-cen
approximation, with a nonorthogonalsp3 basis.7 All of the
matrix elements are computed by explicit evaluation of
appropriate integrals, such asSi j 5^f i uf j& and Hi j
5^f i uHuf j&. The uf i& are eigenfunctions from DFT/LDA
calculations of a single atom in a confining potential. T
classical repulsion term is obtained by fitting the cohes
energy curves of the silicon dimer and bulk silicon in t
diamond lattice structure to DFT/LDA calculations. In th
following discussion we will denote this Hamiltonian a
DF-TB ~density-functional tight binding!. While this is an
appealing formulation, it may be somewhat restrictive. It
not clear that the matrix elements, calculated using c
tracted DFT/LDA wave functions of isolated atoms, can
used in any environment without any fitting. As will be di
cussed in the following section, the performance of t
Hamiltonian in some of the geometries we tested is not
isfactory.

We attempted to improve on this formulation by keepi
certain features of the model and introducing some fitt
parameters to increase its transferability. Since one of
most uncertain aspects of tight-binding Hamiltonians is
distance dependence of the matrix elements, we found it
ful to adopt this particular feature from the DF-TB model b
allow the magnitude of the matrix elements to vary. Ho
ever, our attempts at fitting a tight-binding model with th
distance dependence to a total energy dataset failed to g
significant improvement. For this reason we do not prov
here a new parametrization of the DF-TB model, althou
we compare its predictions to those of the other two mo
Hamiltonians studied.

III. FITTING AND TESTS

To determine the values of the parameters for the NO-
Hamiltonian we fit some results of the model to anab initio
dataset, which includes information about bulk structu
and point defects. For bulk properties of silicon, we inclu
the total energy as a function of volume for the diamond a
b-Sn structures~the two lowest energy, experimentally ob
served structures of silicon! and the experimental indirec
band gap of the diamond structure. The energetics of p
defects included in the dataset are the formation energie
the vacancy and two kinds of self-interstitials, and the ene
barrier for the concerted-exchange mechanism
diffusion.10 Interstitials and vacancies are the dominant po
defects seen in crystalline silicon, and their formation a
migration energies control solid-state processes such as
st
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diffusion.11 Concerted exchange is a theoretically propos
mechanism for diffusion without involving vacancies
interstitials.10 The saddle-point configuration of th
concerted-exchange path includes two broken bonds rela
to the ideal crystal, leading to a substantial activation ene
~4.5 eV!. The usual defect mechanisms, where the activa
states correspond to bond breaking in highly distorted en
ronments, have considerably lower activation energies
migration ~a low as a few tenths of an eV!, and represent a
different aspect of atomic processes in Si. All the abo
structures are chosen to describe the type of geometries
pected to be encountered in simulations of crystalline a
amorphous silicon. The atoms in these structures are pri
rily fourfold coordinated, with some distortion of the bon
angle and length, as well as some threefold and fivefold
ordinated atoms. The formation energies and energy bar
which govern the kinetics of solid-state processes, domina
by bond breaking and healing both in distorted~e.g., point
defects! and in undistorted environments~e.g., the concerted
exchange!, should be reasonably close to the range of en
gies discussed here.

The parameters which result from this fitting are listed
Table I. We emphasize that, as will be discussed below,
fit to the dataset is not perfect. The very complex functio
forms of the models result in a difficult optimization prob
lem, in which parameters need to be found that minim
deviation from the the energies of the structures included
the dataset. We use a simulated annealing procedure to
complish this task. However, due to the complexity of t
problem, this can only be viewed as getting close to a r
sonable set of parameters, while a perfect match to targ
values is rather difficult, if at all possible.

We also performed additional tests of the model Hamil
nians, by considering a range of structures beyond the o

TABLE I. Parameters in the NO-TB and MS-TB Hamiltonian
the former were generated by fitting to theab initio total energy
dataset described in the text.es andep are the on-site energies fo
the s andp orbitals, respectively.Vll8m are the magnitudes of the
matrix elementsVll8m(r ) at r 5d0, anda is the decay length in the
exponential distance dependence of the matrix elements@see Eq.
~1!#. dmin is the position of the minimum of the parabola in th
expression forK(r ) @see Eq.~4!#. K0 andC0 are the magnitude of
K(r ) at r 5dmin and the curvature of the parabola as a function or ,
respectively.x0 is the magnitude of the classical repulsion functi
x(r ) at r 5d0 @see Eq.~8!#.

NO-TB MS-TB

es ~eV! -13.10 -13.55
ep ~eV! -5.85 -6.52
Vsss ~eV! -1.82 -2.37
Vsps ~eV! 1.66 2.52
Vpps ~eV! 3.09 3.32
Vppp ~eV! -0.58 -1.07

a ~Å 21) 1.726 1.6
dmin ~Å! 2.255 2.36
K0 1.420 1.7
C0 1.965 1.6
x0 ~eV! 0.00822 0.05
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included in the fitting dataset. These comprise more lo
energy bulk lattices, as well as relaxed structures for e
point defect and the relaxed structure of the concert
exchange saddle point. The surface energies for severa
constructions of the~100! and ~111! surfaces were also ex
amined as part of the testing. The comparison to surfa
provides a sensitive test of how reliable the model Hami
nians are, since the atomic geometries on surfaces are
nificantly different from those in the fitting dataset. In th
following, results from the fitting and testing calculation
with DFT/LDA, DF-TB, MS-TB, and NO-TB are compared

A. Bulk lattices

The results for the total energy as a function of volum
for various low-energy silicon structures are plotted in Fig.
The diamond structure, with its fourfold coordination a
sp3 bonding, is the ground state. Theb-Sn structure is a
low-energy sixfold coordinated structure observed exp
mentally under high pressure.12,13 It has also been exten
sively studied using DFT/LDA.14–16The accuracy of NO-TB
in reproducing the energetics of these structures is impor
in establishing its reliability. As is apparent from the grap
NO-TB agrees very well with DFT/LDA calculations for th
diamond andb-Sn structures of silicon. The agreement
substantially better than the other two models, as expe
since these two structures were included in the fitting dat
of the present model. Our model does, however, overe
mate the binding energy for the other structures examine
body-centered-tetragonal structure with fivefold coordinat
proposed by Boyeret al.15 ~BCT5! and simple cubic~SC!.
These are both low-energy structures for silicon with re
tively low coordination numbers~5 for BCT5 and 6 for SC!.
Higher coordination bulk phases of silicon~such as bcc, fcc
hcp, etc.! are usually not relevant experimentally because
their high energy.

The Hamiltonian we present here also gives a more ac
rate bulk modulus than earlier tight-binding models, as c
be seen in the tabulated results obtained from fitting
Birch-Murnaghan equation of state17 to the energy-versus
volume curves~Table II!. An additional sensitive test is pro
vided by other elastic constants for the diamond structu

FIG. 1. Cohesive energy curves for the diamond struct
~DIA !, b-Sn, body-centered-tetragonal-5~BCT5!, and simple-cubic
~SC! lattices from four different calculations~DFT/LDA, NO-TB,
MS-TB, and DF-TB!.
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which are listed in Table III. The MS-TB and NO-TB mod
els differ substantially, the latter predicting softer elastic co
stants closer to the DFT/LDA calculations,18,19with errors of
12–33 %. The results of the DF-TB are more accurate t
either MS-TB or NO-TB for the bulk elastic constants.

Since the emphasis here is on reproducing total ener
accurately, we have not placed much attention in fitting
band structure. Nevertheless we have made an effort to
sure that key features of the band structure, like the vale
bandwidth and the band gap are reasonably accurate. A c
parison of these features for the three Hamiltonians con
ered here is given in Table IV.

B. Point defects

Point defects are commonly seen even in the best
pared silicon crystal and are responsible for important p
cesses such as diffusion. Accordingly, an accurate repro
tion of their energetics is important for simulations of soli
state systems. The formation energies,Ef , for three
representative point defects as obtained from the vari
model Hamiltonians considered and from DFT/LDA calc
lations, which were included in the fitting dataset, are lis

e

TABLE II. Bulk properties of various crystal lattices. The DFT
LDA cohesive energy numbers are shifted uniformly so that
value for the diamond structure matches the experimental resu

Structure DFT/LDA NO-TB MS-TB DF-TB

Binding energy~eV/atom!

diamond -4.70 -4.71 -5.19 -4.97
b-Sn -4.47 -4.57 -4.27 -4.48
BCT5 -4.45 -4.62 -4.64 -4.62
SC -4.35 -4.58 -4.50 -4.58

Equilibrium volume~Å 3/atom!

diamond 19.67 19.67 19.98 19.87
b-Sn 14.63 15.16 15.70 18.67
BCT5 16.77 16.67 17.17 20.98
SC 15.44 15.02 15.63 18.99

Bulk modulus~GPa!
diamond 98.0 104.8 153.5 115.1
b-Sn 129.1 138.1 164.7 190.5
BCT5 111.4 134.6 163.3 265.5
SC 117.3 147.5 182.0 244.7

TABLE III. Elastic constants of the diamond lattice structur
c44* is the value of the elastic constant without including the rela
ation of the atomic basis.

DFT/LDA a NO-TB MS-TB DF-TB

c11 ~GPa! 166 145 218 185
c12 ~GPa! 63.3 84.5 121 80.1
c44* ~GPa! 135 162 135
c44 ~GPa! 79.3 53.4 81.6 89.5

aFrom Ref. 19.
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TABLE IV. Band structure features for diamond structure silicon. The DFT/LDA results include a 0.
scissor-operator shift of the conduction levels~Refs. 20 and 21!.

DFT/LDA NO-TB MS-TB DF-TB

Valence band width 11.92 11.75 13.83 10.69
Band gap atG 3.15 1.68 3.07 3.20
Minimum band gap 1.14 1.51 2.72 3.20
Minimum band and gap location 3/4X L L G
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in Table V. We considered the self-interstitial in the tetrah
dral and hexagonal configurations, and the vacancy. Al
the defect calculations were performed in a 216 atom cu
diamond structure supercell with one atom added to, or
moved from, the ideal configuration. Due to the large volu
of the unit cell, k-point sampling was restricted to theG
point only.

For the interstitial defects, while the lowest-energy co
figuration is believed to be a split interstitial, the configur
tions we considered have the advantage of being conce
ally simple and easy to define and visualize. They may a
be important stationary points in the path of a diffusing
terstitial atom ~local minima, i.e., metastable, or loca
maxima, i.e., saddle points!.23 The objective here is to deter
mine the accuracy with which the model Hamiltonians re
resent the energetics of a given plausible atomic config
tion. The tetrahedral interstitial is a high-symmetry, lo
energy configuration. It has four nearest neighbors to wh
it attempts to formsp3 bonds. The four neighbors of th
tetrahedral interstitial are fivefold coordinated, having
neighbors four crystal atoms and the interstitial. Although
is more difficult to define an interstitial position in an amo
phous system, overcoordinated atoms~or floating bonds24!
analogous to the neighbors of an interstitial can occur,25 and
a realistic representation of this geometry is important
simulating the amorphous system. The hexagonal interst
is also a high-symmetry, low-energy configuration, althou
at least in the unrelaxed geometry it is higher in energy t
the tetrahedral interstitial. It is positioned in the center o
hexagonal ring in the diamond structure. This position is h
way between two adjacent tetrahedral interstitial positio
and can be viewed as the saddle point for diffusion of int
stitial atoms between tetrahedral positions. Since the kine
of activated processes~such as diffusion of interstitials! is
controlled by the energy of the transition states, accu
calculation of such potential saddle-points structures is
portant. The saddle-point configurations of the vacancy
the concerted exchanged were also considered in fully
laxed geometries.

Both the MS-TB and DF-TB Hamiltonians overestima
the formation energies of the self-interstitials by factors
-
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two to three as compared with DFT/LDA. These large err
indicate potential problems in simulating bulk systems w
bonding geometries similar to these defects, including cr
talline silicon where these defects are often seen, and am
phous silicon where overcoordinated atoms are present.
exemplifies the problems associated with using semiem
ical models such as tight-binding Hamiltonians in enviro
ments where they have not been fit or adequately tested.
NO-TB model Hamiltonian includes these defects in the
ting dataset, and consequently is much more accurate
either the MS-TB or DF-TB models.

The vacancy is a different type of low-energy point defe
seen in crystalline silicon. Undercoordinated atoms~or dan-
gling bonds24!, similar to those surrounding the missing ato
in the crystal vacancy, are also observed in amorph
samples.25 As in the case of the interstitials, the MS-T
Hamiltonian overestimates the formation energy of the
cancy as compared with our DFT/LDA calculations. T
DF-TB Hamiltonian, on the other hand, gives more realis
values for the vacancy formation energy. This indicates t
there are qualitatively different properties to under- and ov
coordinated point defects, and both need to be checke
ensure the reliability of a particular model. The parameters
the NO-TB Hamiltonian improve the vacancy formation e
ergy as compared to the MS-TB model, reducing the erro
less than 1 eV.

As a further test of the accuracy of these Hamiltonia
each was used to relax the three point defects with
conjugate-gradient energy minimization algorithm. Except
noted below, we do not apply any constraints to fix the sy
metry of the system while it relaxes, and any symme
breaking in the relaxation process is spontaneous. The re
of this relaxation are listed in Table V. As expected, t
formation energy of the relaxed defects is substantially low
than the ideal defects. The vacancy and hexagonal inters
were stable in all the Hamiltonians studied, and were rela
without constraints. The tetrahedral interstitial was stable
the MS-TB and NO-TB models, but in the DF-TB model
relaxes into a split interstitial. To force the interstitial atom
remain in the tetrahedral site, the outer shell of atoms in
periodic unit cell was fixed during the relaxation. The co
8
2

TABLE V. Formation energies for ideal point defectsEf
ideal and relaxation energiesDEf5Ef

relaxed2Ef
ideal.

DFT/LDA a NO-TB MS-TB DF-TB
Ef

ideal DEf Ef
ideal DEf Ef

ideal DEf Ef
ideal DEf

Tetrahedral interstitial 3.7 – 4.8 0.1 – 0.2 4.5 0.5 9.6 1.2 11.7 3.
Hexagonal interstitial 4.3 – 5.0 0.6 – 1.1 6.3 1.3 9.7 1.2 12.9 5.
Vacancy 3.3 – 4.3 0.4 – 0.6 4.4 1.2 6.0 0.4 3.9 0.6

aReferences 22, 26, and 27.
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straint applied to this defect to keep it in the tetrahedral
sition accounts for the differences in the relaxed format
energy between our calculation using the DF-TB Ham
tonian and the results reported by Frauenheimet al.7 Com-
pared with all of the tight-binding Hamiltonians, previous
published DFT/LDA calculations22,26,27 generally show
smaller relaxation energies for the structures considered.
difference is especially large for the tetrahedral interstitia
all of the model Hamiltonians, and in the case of the DF-
model also for the hexagonal interstitial. The exception is
vacancy, where both the MS-TB and DF-TB models pred
a relatively accurate relaxation energy~although the MS-TB
model greatly overestimates both the unrelaxed and rela
formation energies!.

The NO-TB model predicts almost identical formation e
ergies for the relaxed vacancy and tetrahedral intersti
while the hexagonal interstitial is about 1.5 eV higher. T
path connecting two tetrahedral interstitial positions throu
a hexagonal interstitial position would correspond to a
eV barrier. The other two model Hamiltonians predict alm
identical formation energies for the two relaxed interstitia
indicating only a small energy barrier to diffusion of tetrah
dral interstitials through the hexagonal configuration. Th
two models predict the vacancy to be 2.5 – 4.0 eV lower
energy. However, because the MS-TB and DF-TB mod
overestimate the formation energies of the ideal defects,
also overestimate the formation energies of the relaxed
fects. In fact, the results from both of these model Hamil
nians put the formation energies of interstitials inrelaxed
configurations higher than DFT/LDA formation energies
defects inideal configurations.

The geometries and symmetries of the relaxed defects
still a subject of active investigation. Accordingly, we pr
vide here some details of the relaxed defect configurati
produced by the various models considered. For the hex
nal interstitial the three Hamiltonians we studied predict
outward relaxation of the hexagonal ring and no symme
breaking. This result is qualitatively in agreement with DF
LDA calculations.26 The tetrahedral interstitial is more com
plicated. The MS-TB Hamiltonian predicts that some of t
nearest neighbors relax outward and some relax inward,
ducing an almost complete breaking of the symmetry of
ideal structure. The DF-TB Hamiltonian predicts outward
laxation of the neighbors to a low-symmetry structure. T
low symmetry is perhaps caused by the tendency of the
terstitial to relax from the tetrahedral position into a sp
configuration, a transition which is hindered here by the
plied constraint for the reasons described above. In
NO-TB model the four neighbors of the tetrahedral inters
tial relax outward. The interstitial moves towards one pair
neighboring atoms, and away from the other pair. The ne
bors accommodate the distortion by completely break
their tetrahedral symmetry. The DFT/LDA work of Kell
and Car26 predicts a relaxed tetrahedral configuration with
of the symmetry of the ideal geometry, but the direction
the relaxation was not specified.

All four Hamiltonians predict overall inward relaxatio
around the vacancy in qualitative agreement with rec
DFT/LDA calculations,26,27 although they each predict
very different symmetry. The MS-TB and DF-TB Hamilto
nians predict low-symmetry structures, while the NO-T
Hamiltonian predicts a structure with tetragonal symme
-
n
-

he

e
t

ed

-
l,

h
5
t
,
-
e
n
ls
ey
e-
-

f

re

s
o-
n
y
/

o-
e
-
s
n-

-
e
-
f
-

g

l
f

t

,

with two nonadjacent edges contracting by equal amou
while the other four edges contract by a smaller amount.
the three tight-binding models, only our Hamiltonian is
agreement with the DFT/LDA results of Kelly and Car26 and
Seong and Lewis,27 which also predict a relaxation with te
tragonal symmetry.

Finally, we have calculated the activation energies for d
fusion of the various defects. The activation energy for d
fusion of the vacancy is 3.5 eV~3.2 eV of formation energy
and 0.3 eV of migration energy!, that of the interstitial is 5.0
eV ~4.0 eV of formation energy at the tetrahedral site, a
1.0 eV of migration energy through the hexagonal site! and
that of the concerted exchange is 3.7 eV, including full
laxation at the saddle point~the unrelaxed saddle-point con
figuration with energy 5.4 eV was included in the fittin
dataset!.

C. Surface properties

To examine the behavior of our model Hamiltonian in
environment substantially different from the regime where
was fit, we calculated the surface energies of various lo
energy reconstructions of the~100! and ~111! surfaces, the
two lowest-energy surfaces of silicon. Most experimen
and theoretical studies of surface phenomena in silicon,
cluding technologically relevant work such as deposition a
growth, are done on one of these two surfaces.

(100) Surface: For the~100! surface we calculate the su
face energyg of the ideal surface. For each relaxed or r
constructed configuration, we compute the surface ene
differenceDg relative to the ideal surface. We first relax th
surface while imposing a (131) periodicity, which prohibits
any reconstruction. We then allow the formation of symm
ric dimers which eliminates one of the two dangling bon
per surface atom. When the dimerized surface is allowed
break the symmetry, a tilted dimer (231) reconstruction is
spontaneously formed. The surface energies are liste
Table VI.

All of the Hamiltonians produce qualitatively correct re
sults, with a stable tilted dimer (231) reconstruction as see
in DFT/LDA calculations29 ~shown in Fig. 2!. The tilting of

TABLE VI. Surface energies for the Si~100! and ~111! sur-
faces.g is the surface energy in eV per (131) cell; Dg is the
relaxation energy relative to ideal (131) g; u is the tilt angle of
dimers;d is the bond length of the dimer.

DFT/LDA a NO-TB MS-TB DF-T

Si~100!
Ideal (131) g 2.5 1.5 2.4 1.9
Relaxed (131) Dg -0.03 -0.03 -0.01 -0.0
Buckled dimer (231) Dg -0.83 -0.53 -0.83 -0.6

u 15° 14° 12° 15°
d ~Å! 2.23 2.41 2.38 2.6

Si~111!
Ideal (131) g 1.56 1.19 1.67 1.2
Relaxed (131) Dg -0.020 -0.003 -0.0
(232) T4 Dg -0.30 -0.26 -0.17 -0.0
(232) H3 Dg -0.25 -0.26 -0.17 -0.1

aReferences 28 and 29.



se
e
t

en
ht
c
th
ar
e
-

ie
de
ru
g
th
s
lib
h
d

nd
s
t

by

of
s

e

ck

th
th
if-
de
a
of
a

m

of
nd

ec-

the
d. It
the
the
xa-

new
o.
n-

r
s
-
e

if-
bly
t it
gies
ot
TB
atly
con-
the
us
ies
ht-
of

con-
ve-

ies

.

e
that
the

10 494 56NOAM BERNSTEIN AND EFTHIMIOS KAXIRAS
the dimer is caused by a Jahn-Teller distortion which rai
the energy of one of the dangling bonds and lowers the
ergy of the other, inducing both of the unpaired electrons
go into the lower-energy dangling bond. This is a fundam
tally quantum-mechanical phenomenon which all the tig
binding Hamiltonians considered here correctly reprodu
Surprisingly, some classical potentials can reproduce
feature.1 Results from the three Hamiltonians considered
in qualitatively good agreement with each other and in agr
ment with DFT/LDA results. The MS-TB and DF-TB mod
els, which predicted higher point defect formation energ
also predict higher surface energies than the NO-TB mo
The accuracy of the geometrical structure of the reconst
tion varies from model to model. All of the tight-bindin
models err in predicting a dimer bond that is longer than
equilibrium bond length, unlike DFT/LDA calculation
which predict a dimer bond that is shorter than the equi
rium bond length. This bond length is determined by t
balance between the large forces caused by the severe
tortion of the bonds to the bulk and creation of the new bo
It is therefore sensitive to small changes in the energetic
the bond bending and formation processes. The amoun
tilt of the asymmetric dimer is reproduced satisfactorily
all model Hamiltonians.

(111) Surface: The ~111! surface is the cleavage plane
silicon, and the (737) reconstruction which minimizes it
energy produces the lowest-energy~hence most stable! sur-
face of silicon. This reconstruction has been observed exp
mentally and studied theoretically.30–32 It includes features
such as dimer bridges, adatoms on the surface and a sta
fault underneath half of the (737) cell. The stacking fault
energy is very low and does not change the structure of
surface much, i.e., the faulted and unfaulted halves of
(737) unit cell have identical local features. The most d
ficult of those features to reproduce with an empirical mo
is the adatom geometry, which introduces significant str
to the substrate.33 In both the faulted and unfaulted halves
the (737) unit cell, adatoms are arranged locally in
(232) configuration. For simplicity, we study the adato
geometry in a (232) periodicity, and in theT4 ~stable! and

FIG. 2. ~100! surface: (231) buckled dimer reconstruction
Surface atoms are shown shaded.
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H3 ~metastable! positions. The ideal surface is composed
a hexagonal lattice of atoms each with one dangling bo
perpendicular to the surface. TheT4 adatom reconstruction
places one adatom in each (232) cell in the center of a
triangle of surface atoms, directly above an atom of the s
ond surface layer~shown in Fig. 3!. The T4 adatom saturates
three dangling bonds on the surface with a distortion of
ideal bond angles, but introduces one more dangling bon
can also lower its energy by forming an effective bond to
atom directly beneath it in the second surface layer. In
H3 configuration, the adatom resides at the center of a he
gon composed of first and second layer atoms. TheH3 ada-
toms also saturate three dangling bonds and create a
one, but they do not have a second layer atom to bond t

As before, we begin by calculating the ideal surface e
ergyg and the energy gainDg by relaxing the surface, eithe
with a (131) periodicity imposed, or with reconstruction
corresponding to higher periodicity@in this case the two ada
tom (232) reconstructions#. The results are listed in Tabl
VI.

Here the three model Hamiltonians give significantly d
ferent results. The MS-TB Hamiltonian performs reasona
well at reproducing the energy of the ideal surface, bu
underestimates by a factor of two the reconstruction ener
Dg of the T4 andH3 adatom reconstructions, and does n
show an energy difference between the two. The DF-
Hamiltonian underestimates the surface energy, and gre
underestimates the relaxation energies of the adatom re
structions. The NO-TB Hamiltonian also underestimates
surface energy, but it is better than either of the previo
tight-binding models at reproducing the relaxation energ
of the adatom reconstructions. In fact, none of the tig
binding Hamiltonians predict the correct energy ordering
the reconstructions, although in all cases the adatom re
structions are stable, which is already a significant impro
ment over classical potential models.1 Continuing the trend
in point defect formation energies and the~100! surface en-
ergy, the MS-TB and DF-TB models predict higher energ
for the ~111! surface than the NO-TB model.

FIG. 3. ~111! surface: (232) T4 adatom reconstruction. Surfac
atoms are shown shaded, with lighter shading for those atoms
form the top layer of the ideal surface, and darker shading for
adatoms.
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IV. DISCUSSION

The two Hamiltonians that we compare to our curre
work, those of Menon and Subbaswamy6 and Frauenheimet
al.,7 are both nonorthogonal tight-binding Hamiltonians w
a minimal sp3 basis in the two-center approximation. Th
functional forms of their matrix elements are derived in ve
different ways. The MS-TB model uses a very simple fun
tional form and the assumptions of an extended Hu¨ckel
theory to keep the number of parameters to a minimu
Most of its parameters are taken directly from Harriso
work.9 Only three parameters are left to be fit to experime
tal data. The DF-TB model uses direct calculations of
matrix elements from DFT/LDA single-atom contracte
wave functions. Only the classical repulsion term is fit
experimental data. Despite the differences in the functio
forms of these two Hamiltonians, they share some favora
and unfavorable features. Both reproduce the energetic
the bulk diamond structure fairly well, and both provide
reasonable description of the low-energy surface reconst
tions we have considered. However, neither reproduces
the cohesive energy curves of the other low-energy b
structures of silicon. Both of these model Hamiltonians ov
estimate the formation energies of point defects, and b
overestimate the band gap of the diamond structure.

It appears from our observations that the band gap and
point defect formation energies are linked. In the fitting p
cess we attempted to reduce the predicted formation ene
of the point defects, while maintaining an accurate band g
We found that whenever the defect formation energies
crease, so does the band gap. The behavior of the MS
and DF-TB models is consistent with this observation. B
have substantially larger band gaps than the NO-TB mo
A
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and both greatly overestimate the formation energies of
point defects we have considered. A related observatio
that these models also predict higher surface energies
the NO-TB model.

The defect formation energies are still overestimated
the model we have introduced, despite the fact that we
clude these energies in the fitting dataset. To get more a
rate defect formation energies, the constraint on the band
can be relaxed, but the gap then becomes much smaller
the experimental value. We have chosen a compromise
tween accurate defect formation energies and a qualitati
correct band structure.

The task of producing tight-binding Hamiltonians for sil
con is a challenging one. Previously presented models h
not been fit to geometries that are similar to those of defe
in crystalline silicon and to amorphous silicon, and their a
plicability to these systems cannot be taken for granted.
model Hamiltonian gives good agreement with DFT/LD
calculations for total energies of geometries relevant to
tended silicon structures. It predicts accurately bulk prop
ties such as the energetics of experimentally relevant cry
phases and the elastic constants of the diamond crystal s
ture. It also reproduces the energetics of distorted~but still
experimentally relevant! geometries such as point defec
and surfaces. It is hoped that this Hamiltonian can contrib
to advances in accurate simulations of large scale syst
and complex processes in crystalline and amorphous silic
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